產(chǎn)生X射線的方式主要有以下四種:X射線管、激光等離子體、同步輻射和X射線激光。
X射線管
X射線管是利用高速電子撞擊金屬靶面產(chǎn)生X射線的電子器件,分為充氣管和真空管兩類(lèi)。1895年倫琴發(fā)現(xiàn)X射線時(shí)使用的克魯克斯管就是最早的充氣X射線管。
1913年考林杰發(fā)明的真空X射線管的最大特點(diǎn)是鎢燈絲加熱到白熾狀態(tài)以提供管電流所需的電子,調(diào)節(jié)燈絲的加熱溫度就可以控制管電流,可提高影像質(zhì)量。
1913年發(fā)明了在陽(yáng)極靶面與陰極之間裝有控制柵極的X射線管,在控制柵上施加脈沖調(diào)制,以控制X射線的輸出和調(diào)整定時(shí)重復(fù)曝光,部分地消除了散射線,提高了影像的質(zhì)量。
1914年制成了鎢酸鎘熒光屏,開(kāi)始了X射線透視的應(yīng)用。
1923年發(fā)明了雙焦點(diǎn)X射線管,X射線管的功率可達(dá)幾千瓦,矩形焦點(diǎn)的邊長(zhǎng)僅為幾毫米,X射線影像質(zhì)量大大提高。同時(shí),造影劑的逐漸應(yīng)用,使X射線的診斷范圍也不斷擴(kuò)大。X射線管還廣泛用于零件的無(wú)損檢測(cè),物質(zhì)結(jié)構(gòu)分析、光譜分析等方面。
2002年,美國(guó)北卡羅來(lái)納大學(xué)的華裔科學(xué)家盧健平等人為X射線源找到了新的方法。這種方法用碳納米管制成“場(chǎng)發(fā)射陰極射線管”來(lái)發(fā)射高能電子,無(wú)須利用高溫產(chǎn)生高能電子束,便能產(chǎn)生X射線。在室溫條件下,一薄層碳納米管就能產(chǎn)生高能電子束,一接通電源即可發(fā)射X射線,沒(méi)有金屬絲的預(yù)熱過(guò)程。
激光等離子體光源
激光等離子體光屬于價(jià)格便宜、易于操作的光源,可以用于X射線顯微術(shù),象電子掃描顯微鏡一樣作為實(shí)驗(yàn)室的常規(guī)分析工具。其基本原理是:當(dāng)高強(qiáng)度(1014~1015 W/cm2)激光脈沖聚焦打在固體靶上時(shí),靶的表面迅速離化形成高溫高密度的等離子體,進(jìn)而發(fā)射X射線。它是一種具有足夠輻射強(qiáng)度的獨(dú)立點(diǎn)光源,所用泵浦激光器主要有Nd:YAG,釹玻璃和KrF等。X射線發(fā)射與靶材料有關(guān),由于濺射殘屑可能損傷和污染光學(xué)系統(tǒng)和樣品,若用氣體靶代替固體靶可以避免殘屑問(wèn)題。因此,需要進(jìn)一步研究開(kāi)發(fā)有效的、高重復(fù)頻率工作的、不產(chǎn)生殘屑的激光等離子體X射線光源。
同步輻射光源
速度接近光速的帶電粒子在磁場(chǎng)中作圓周運(yùn)動(dòng)時(shí),會(huì)沿著偏轉(zhuǎn)軌道切線方向發(fā)射連續(xù)譜的電磁波(左圖)。1947年人類(lèi)在電子同步加速器上首次觀測(cè)到這種電磁波,并稱(chēng)其為同步輻射,后來(lái)又稱(chēng)為同步輻射光。同步輻射最初是作為電子同步加速器的有害物而加以研究的,后來(lái)成為一種從紅外到硬X射線范圍內(nèi)有著廣泛應(yīng)用的高性能光源。同步輻射光源是開(kāi)展凝聚態(tài)物理、材料科學(xué)、生命科學(xué)、資源環(huán)境及微電子技術(shù)等多學(xué)科交叉前沿研究的重要平臺(tái)。
激光等離子體光屬于價(jià)格便宜、易于操作的光源,可以用于X射線顯微術(shù),象電子掃描顯微鏡一樣作為實(shí)驗(yàn)室的常規(guī)分析工具。其基本原理是:當(dāng)高強(qiáng)度(1014~1015 W/cm2)激光脈沖聚焦打在固體靶上時(shí),靶的表面迅速離化形成高溫高密度的等離子體,進(jìn)而發(fā)射X射線。它是一種具有足夠輻射強(qiáng)度的獨(dú)立點(diǎn)光源,所用泵浦激光器主要有Nd:YAG,釹玻璃和KrF等。X射線發(fā)射與靶材料有關(guān),由于濺射殘屑可能損傷和污染光學(xué)系統(tǒng)和樣品,若用氣體靶代替固體靶可以避免殘屑問(wèn)題。因此,需要進(jìn)一步研究開(kāi)發(fā)有效的、高重復(fù)頻率工作的、不產(chǎn)生殘屑的激光等離子體X射線光源。 同步輻射光源 速度接近光速的帶電粒子在磁場(chǎng)中作圓周運(yùn)動(dòng)時(shí),會(huì)沿著偏轉(zhuǎn)軌道切線方向發(fā)射連續(xù)譜的電磁波(左圖)。1947年人類(lèi)在電子同步加速器上首次觀測(cè)到這種電磁波,并稱(chēng)其為同步輻射,后來(lái)又稱(chēng)為同步輻射光。同步輻射最初是作為電子同步加速器的有害物而加以研究的,后來(lái)成為一種從紅外到硬X射線范圍內(nèi)有著廣泛應(yīng)用的高性能光源。同步輻射光源是開(kāi)展凝聚態(tài)物理、材料科學(xué)、生命科學(xué)、資源環(huán)境及微電子技術(shù)等多學(xué)科交叉前沿研究的重要平臺(tái)。
擁有近70條光束線的美國(guó)阿貢實(shí)驗(yàn)室同步輻射光源
同步輻射光源的主體是電子儲(chǔ)存環(huán),30多年來(lái)已經(jīng)歷了三代的發(fā)展。第一代同步輻射光源的電子儲(chǔ)存環(huán)是為高能物理實(shí)驗(yàn)而設(shè)計(jì)的,只是“寄生”地利用從偏轉(zhuǎn)磁鐵引出的同步輻射光,故又稱(chēng)“兼用光源”;第二代同步輻射光源的電子儲(chǔ)存環(huán)則是專(zhuān)門(mén)為使用同步輻射光而設(shè)計(jì)的,主要從偏轉(zhuǎn)磁鐵引出同步輻射光;第三代同步輻射光源的電子儲(chǔ)存環(huán)對(duì)電子束發(fā)射度和大量使用插入件進(jìn)行了優(yōu)化設(shè)計(jì),使電子束發(fā)射度比第二代小得多,同步輻射光的亮度大大提高,如加入波蕩器等插入件可引出高亮度、部分相干的準(zhǔn)單色光。
同步輻射光具有頻譜寬且連續(xù)可調(diào)(具有從遠(yuǎn)紅外、可見(jiàn)光、紫外直到X射線范圍內(nèi)的連續(xù)光譜)、亮度高(第三代同步輻射光源的X射線亮度是X光機(jī)的上億倍)、高準(zhǔn)直度、高偏振性、高純凈性、窄脈沖、精確度高以及高穩(wěn)定性、高通量、微束徑、準(zhǔn)相干等獨(dú)特的性能。
設(shè)計(jì)有30個(gè)光引出口的英國(guó)DIAMOND同步輻射光源
世界上有近40臺(tái)同步輻射光源正在運(yùn)行,還有幾十臺(tái)在設(shè)計(jì)、建造中。我國(guó)的北京同步輻射裝置(BSRF)、合肥中國(guó)科技大學(xué)同步輻射裝置(NSRL)和臺(tái)灣新竹的同步輻射裝置(SRRC)分別屬于第一、第二和第三代光源,正在建造的上海光源(SSRF)屬第三代光源。
BSRF平面圖
SSRF平面圖
建在BSRF的我國(guó)大陸第一條中能X射線雙晶單色器光束線,該光束線用于中等能區(qū)X射線范圍(1.2keV-6.0keV)的計(jì)量學(xué)、探測(cè)器標(biāo)定、光學(xué)元件性能測(cè)試及吸收譜學(xué)等方面的研究,具有重要的科學(xué)意義
北京同步輻射裝置4W1A光束線形貌學(xué)實(shí)驗(yàn)站上能量為24keV的X射線拍攝的肝樣品圖像
X射線激光
正因?yàn)閄射線的應(yīng)用越來(lái)越廣泛,科學(xué)家著重研究增加X(jué)射線的強(qiáng)度。世界上第一個(gè)紅寶石激光1960年問(wèn)世以來(lái),在X射線波段實(shí)現(xiàn)激光輻射就一直是激光研究的重要目標(biāo)。X射線激光除了具有普通激光方向性強(qiáng)、發(fā)散度小的特點(diǎn)外,其單光子能量比傳統(tǒng)的光學(xué)激光高上千倍,具有極強(qiáng)的穿透力。
1981年,美國(guó)在地下核試驗(yàn)中進(jìn)行核泵浦X射線激光實(shí)驗(yàn)獲得成功,極大地推動(dòng)了開(kāi)展實(shí)驗(yàn)室X射線激光的研究。水窗的飽和X射線激光是目前唯一能夠?qū)ι锘铙w細(xì)胞進(jìn)行無(wú)損傷三維全息成像和顯微成像的光源,借助于它有可能解開(kāi)生命之謎。美、英、日、法、德、俄羅斯和中國(guó)等國(guó)的許多著名實(shí)驗(yàn)室都相繼作了部署。1994年,美國(guó)利弗莫爾實(shí)驗(yàn)室用世界上功率最大的激光器的3000焦激光能量泵浦釔靶,產(chǎn)生了波長(zhǎng)15.5納米的飽和X射線激光。1996年底,中國(guó)旅英青年學(xué)者張杰領(lǐng)導(dǎo)的聯(lián)合研究組,在英國(guó)盧瑟福實(shí)驗(yàn)室利用多路激光器轟擊釤靶,在泵浦能量?jī)H為150焦的情況下,成功地獲得了波長(zhǎng)為7.3納米的X射線激光飽和增益輸出,為在“水窗”波段實(shí)現(xiàn)增益飽和輸出的X射線激光帶來(lái)了巨大的希望。
X射線自由電子激光
自由電子激光是一種以相對(duì)論優(yōu)質(zhì)電子束為工作媒介、在周期磁場(chǎng)中以受激輻射方式放大短波電磁輻射的強(qiáng)相干光源(其“周期磁場(chǎng)”由波蕩器產(chǎn)生),具有波長(zhǎng)范圍大、波長(zhǎng)易調(diào)節(jié)、亮度高、相干性好、脈沖可超短等突出優(yōu)點(diǎn),尤其是高增益短波長(zhǎng)自由電子激光,普遍被看好是下一代光源的代表,具有巨大的發(fā)展?jié)摿椭卮蟮膽?yīng)用前景。(左圖為德國(guó)DESY自由電子激光器的波蕩器)
目前,全世界有20多個(gè)能產(chǎn)生從紅外線到紫外線各種波長(zhǎng)激光的自由電子激光器已經(jīng)投入使用或正在研制中?,F(xiàn)在科學(xué)家正試圖讓其波長(zhǎng)范圍延伸到X射線。X射線自由電子激光能產(chǎn)生波長(zhǎng)可調(diào)的,極高強(qiáng)度的飛秒相干光,可為各種體系的高空間分辨和時(shí)間分辨的動(dòng)力學(xué)研究提供強(qiáng)有力的手段,將給物理、化學(xué)、材料科學(xué)、地質(zhì)、生命科學(xué)和醫(yī)學(xué)等多個(gè)學(xué)科的前沿研究帶來(lái)突破,為人類(lèi)對(duì)自然的認(rèn)識(shí)打開(kāi)全新的視野。利用它可對(duì)活細(xì)胞進(jìn)行無(wú)損傷立體成像,直接觀察細(xì)胞中的生命過(guò)程,為揭開(kāi)生命之謎提供重要的工具。利用它進(jìn)行顯微和光刻,可以大幅度地提高分辨率和精度。同時(shí),也將對(duì)軍事與工業(yè)的發(fā)展帶來(lái)深遠(yuǎn)的影響。發(fā)展X射線自由電子激光具有前瞻性及戰(zhàn)略意義。
世界各科技強(qiáng)國(guó)均將X射線自由電子激光的研究列入了未來(lái)科技發(fā)展計(jì)劃的重要內(nèi)容,正在加緊研制的X射線自由電子激光器的能量將是現(xiàn)有設(shè)備的100億倍。美國(guó)斯坦福直線加速器中心將于2009年率先推出“直線加速器相干光源(LCLS)”(右圖),這個(gè)項(xiàng)目預(yù)算為3.79億美元。位于漢堡的德國(guó)電子同步回旋加速器研究中心已研制出先進(jìn)的紫外線自由電子激光器,并計(jì)劃到2012年時(shí)推出歐洲的X射線自由電子激光器,預(yù)計(jì)成本為9.08億歐元。日本也在開(kāi)展類(lèi)似的項(xiàng)目。如何用盡可能小的輸入能量在盡可能短的波長(zhǎng)上產(chǎn)生高增益X射線激光是當(dāng)今各科技大國(guó)在該領(lǐng)域競(jìng)爭(zhēng)的主要焦點(diǎn)。
楊振寧先生從1997年5月開(kāi)始先后8次給我國(guó)有關(guān)部門(mén)和有關(guān)領(lǐng)導(dǎo)寫(xiě)信,呼吁中國(guó)盡快開(kāi)展X射線自由電子激光的預(yù)研究,我國(guó)政府和科學(xué)界對(duì)此給予了高度關(guān)注。
高能所曾在1994年研制成功中紅外波段的北京自由電子激光裝置,在亞洲第一個(gè)實(shí)現(xiàn)了飽和出光(左圖為北京自由電子激光裝置)。自2000年起,在中國(guó)科學(xué)院、科技部、國(guó)家自然科學(xué)基金委的先后支持下,上海應(yīng)用物理所、高能所和中國(guó)科技大學(xué)以及北京大學(xué)已聯(lián)合開(kāi)展深紫外自由電子激光的前期和預(yù)制研究工作。這些部署對(duì)于發(fā)展X射線自由電子激光仍過(guò)于薄弱,我國(guó)要跨越發(fā)展到X射線自由電子激光,還存在很多技術(shù)空白和技術(shù)難點(diǎn),為了能在2015年左右建成我國(guó)的X射線自由電子激光裝置,各項(xiàng)關(guān)鍵技術(shù)的研究及裝置建設(shè)的方案論證工作正在進(jìn)行中,裝置的建設(shè)即將正式啟動(dòng)。